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ABSTRACT

Samples were generated from populations with known mean,
standard deviation and covariance matrix for the repeated
measures design for specified values of the V1 and v, para-
meters.

The results of this study indicate that as d.f. and
heterogeneity of covariance increased in the population, the
approximations to the central F distribution and the T2 test
become increasingly more effective in accounting for bias in
the F statistic resulting from violations of the model.

When the power of the various tests was investigated
over the various values of noncentrality, it was found that
the overall level of power for the exact F remainded relative-
ly invariant when the model was violated. When the approximate
procedures using the F distribution were used when violations
of the model for the exact F was present in the population,
and hence "logically" appropriate, the power of these tests
approached that of the exact F.

Descriptive measures of the distribution of epsilon reveal-
ed the sample estimates of the parameter to be best when
sampling from the extreme ranges of the domain of the statistic.

As the d.f. in the covariance matrix increased, differential

prediction of the parameter, given the sample mean, improved.
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CHAPTER I

INTRODUCTION

An experimental study can be classified as a repeated
measures design whenever the total degree of freedom (d.f.)
is greater than the total number of subjects {(n) in an anal-
ysis of variance (Anova) paradigm. In order to have more d.f.
than experimental subjects, more than one observation per sub-
ject must have been made; consequently, there is a departure
from the usual Anova assumption of independence of measures.

Repeated measures designs are quite popular in the
psychological literature. Lana & Lubin (1961, 1963) made a
survey of three journals: Journal of Comparative and physio-
logical Psychology, Journal of Experimental Psychology and,
Journal of Abnormal and Social Psychology, for the years 1957
through 1959 and found that over 35% of the experiments appear-
ing in these journals used repeated measures designs.

The lay-out of a typical repeated measures design, assum-
ing a single classification, fixed constants univariate model,
would consist of an n x k score matrix; i.e., n subjects, each
measured across k classifications, and each of the measures

between subjects would be independent, but measures along the
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k classifications would be dependent since the measures are
made on the same experimental subjects.1

Under such a model, deviations about the grand mean;

e.g., total sum of squares (S.S.), are broken down into between
subjects and within subject variation. The within subject
variation is again partitioned into between treatment and
"residual” variation. The residual variation is the difference
between total withinsubject variability and between treatment
variation. This residual variation, when divided by the approp-
riate d.f. (in the general case, (n-1)(k-1)d.f.), becomes the
error term or denominator of the F ratio and the between treat-
ment variation divided by its appropriate d.f. (k-1) becomes
the numerator for the F ratio.

Thus, it should be observed that the sampling unit is
subjects within groups and that the total d.f., nk-1l, is greater
than the number of subjects used in the experiment. This is one
of the great advantages of the repeated measures design--econ-
omy of subjects; and where the assumption of homogeneity of
covariance holds up, it has been contended (Winer, 1962) that
the individual difference factor has been controlled. (As we
shall see later, such a contention results in a paradox; to
minimize the error variance, to increase the power of the F
test, maximum and constant covariation is needed ... which

implies maximization of individual differences.)




A basic assumption of the univariate Anova model is
zero or homogeneous covariation, between treatments, in the
universe. Since repeated measures involves measuring subjects
across time, the usual outcome of such experimentation does
not result in zero correlation and oftentime, the correlation
matrix does not show homogeneity (Gaito & Wiley, 1963; Lubin,
1962; Lana & Lubin, 1963). Non-homogeneous correlation results
when such factors as carry-over and sequence effects, fatique,
warm-up and transfer of training occur during collection of
data. Suggestions have been made (Box & Mueller, 1958; Winer,
1962) to administer treatments randomly within subjects--thus,
sequence and carry-over effects should cancel out. However,
when the independent variables lie on a time continumn; i.e.,
measurements are made from one time interval to the next, as in
learning experiments, such randomization is not possible.

Having established that violations of the repeated
measures model do occur, the effects of such violations, espe-
cially violation of the assumption of homogeneity of covariance,
should be examined. -

As far back as 1948, Kogan had suggested that non-homo-
geneous correlations result in a biased F statistic. He con-
tended that where the correlations are positive, but unequal,
a positive bias in the F test results; i.e., the test yields

significant results too often. This view is also held by Box
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(1954), Gaito & Wiley (1963), Geisser & Greenhouse (1958),
Lana & Lubin (1963) and Winer (1962), just to mention a few.

The reason the resultant F, arising out of non-homogen-
eously correlated data, is biased can be seen from the fact
that the central F distribution is based on the null case of
no treatment differences, where the numerator and denominator
of the F ratio estimate the same guantity. Thus, when the
null hypothesis (Ho) is true, both numerator and denominator
are estimates of experimental error. Box (1954) has shown
that when the assumption of homogeneity of covariance is
violated, the numerator and denominator of the F ratio do not
estimate the same quantity when there is no treatment effect.

Various attempts have been made to contend with this
bias. Three approaches have been predominant in attempting
to deal with this problem of the inflated F; they are: (1) where
possible, more careful design and control of the experiment,

(2) use of multivariate analysis and, (3) correction of the
biased F by adjusting the d.f. to have F approximate a central
F distribution.

As mentioned before, Box & Mueller (1958) have recommended
randomization of treatment assignment within subjects. They
have shown that if treatments are assigned by the fully random-
ized design of randomized blocks design (i.e., matched subjects),

the expected value (E) for the covariance is zero. Where econ-
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omy of subjects is necessary and constant or zero covariance
is not possible by any randomization procedure, one of the
other two approaches would have to be used.

When there is a lack of homogeneity in the population
variance-covariance matrix (Z), Bock (1963), Gaito & Wiley
(1963), and Lana & Lubin (1963) have recommended the use of
Hotelling's T2 statistic, which when modified by Rao's method
(1952, pp. 239-244), provides a test for homogeneity of means
--by an exact test for differences between correlated means.

There are, however, certain disadvantages in the use of
multivariate procedures. In order to calculate T2, it is
necessary to obtain the inverse of the sample variance-
covariance matrix (Vk). Without the use of a high-speed data

processing system and corresponding computer programs, the

entire operation is both laborious and time consuming. Danford,

Hughes & McNee (1960) have shown that when the assumption of

egqual covariances is fulfilled, the usual univariate procedures

lead to a more powerful test than Hotelling's T2. However, as
n becomes large; i.e., as the d.f. increases, both procedures
lead to equally powerful tests. They also found that when the»
assumptions of homogeneity of variance and covariance did not
hold, and both multivariate and univariate Anova tests were

made on the same data, it was noted that, "... asymptotically,

the univariate and multivariate tests are identical”. The




conclusions drawn from their study are, "... essentially, the

same inferences are made from the univariate and multivariate

1

analyses".

The final approach, where the d.f. for a univariate F
are adjusted to account for bias, has been the most popular
with respect to the solutions suggested and derivations of
correction factors.

The initial work done with correction of the univariate
F distribution by adjustment of the d.f. was due to Box (1954).
Box assumes a multivariate normal distribution and shows that
under the null hypothesis the true distribution of the univar-
iate F can be approximated by adjusting the d.f. for the biased
F. The d.f. for numerator and denominator are both multiplied
by a fraction, epsilon (e¢). (e is used to designate the sample
estimate of epsilon). Here, an attempt is made to account for
the positive bias by a reduction of the d.f.; consequently, a
larger value for F is needed to reject Ho when the statistic
is biased.

The test ratio is

Flk-1)e , (x-1) (n-1)¢

... where ¢ can be estimated from Vk, where Vk is the

sample variance covariance matrix.
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Epsilon is equal to

kk k
- -2 - -
(7. - 9%/ x-1) £z v2 - 2k T 32 + x%52.).
tt ts t
st t=1

Then, vts are the elements of Vk, Gtt is the mean of the
diagonal terms; i.e., the variances, ;t is the mean of tth row
or column, and v.. is the grand mean of V.

Box developed this correction for the case of the single
classification. Geisser & Greenhouse (1958) and Bhat (1958)
have extended Box's results to include multiple groups. Geisser
& Greenhouse, working with a two factor model, analogous to
Lindqﬁist's Type I design (1953), demonstrated that the lower
bound on ¢ is (k—l)—l and the upper bound is unity.

In a later article, Greenhouse & Geisser (1959) recommend
the following steps in testing an F ratio, from a repeated
measures model, for significance. First, the univariate F is
computed and the regular test @ (k-1), (n-1)(k-1) d.f. is made.
If however, the regular test results in a rejection of Ho’ the
next step would be a (conservative) test @ 1, (n-1) d.f... But
if this test shows no evidence of significance, a problem arises:
should Box's epsilon statisitic be used to make an approximate
test of the null hypothesis?

Lana & Lubin (1963) have interpreted Geisser & Greenhouse's

rationale in the following manner




They (Geisser & Greenhouse) argue that since
no one has shown what sample estimate of epsilon
is most appropriate, and the robustness of epsilon
has not been investigated, it is best to use a con-
servative test. (Lana & Lubin, 1963, pp.733)

1

1

Lana & Lubin also comment on Geisser & Greenhouse's
position with respect to the situation where Ho is rejected
when the regular test is used, but not with the conservative
test. "... Geisser & Greenhouse apparently would next try
Box's approximate test, using a sample estimate of epsilon.

We would recommend an exact multivariate test such as Rao's
(the modification of Hotelling's T2)."

It would seem that Box's approach would be one of last
resort. The implication here is that either the sample esti-
mate of epsilon is a poor one, for some undisclosed reason,
or that the experimenter has no idea as to the structure of
the population variance-covariance matrix. When no adequate
a priori estimates of ¢ can be made, on¢would assume maximum
bias to operating and uses a conservative test; i.e., @ 1, (n-1)
d.f. In their definitive article, Geisser & Greenhouse's final
recommendation is to use the conservative test although the

correction may be too conservative. Thus, we now have a neg-

ative bias in the F test rather than a positive one.

Another problem related to the test for a significant F

is the Type II error. The fact that the Type I error is under-

estimated when the population variance-covariance matrix shows
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a lack of homogeneity, the probability of a Type II error may
not be the same as for the unbiased test. The effect of not
reducing the d.f. to compensate for an inflated F is to raise
o level, e.g.; an o of .05 is really .07: an increase in the
probability of the Type I error. All other things being
equal, this will result in a corresponding decrease of the
probability of a Type II error. Thus, the power of the F test
is artificially inflated. Conversely, applying a conservative
or overcorrection to the d.f. will result in a decrease of the
probability of a Type I error, and a corresponding loss in
power. Just how much the probability of the Type II error is
effected by a lack of homogeneity of covariance is not known.
In order that the power of the F test may be evaluated
when these correction procedures are applied to limit the bias
due to heterogeneous covariances, the power functions of the
repeated measures design needs to be known. There is no in-
dication in the literature of adequate power curves to fit re-
peated measures models. However, for those models where scores
are independent of one-another, we see that power is dependent
upon three parameters: degrees of freedom in the numerator
(vl), degrees of freedom in the denominator of the F ratio
(vz) and a noncentrality parameter, designated by delta (8).

Dixon & Massey (1957) and Scheffe (1959) have shown

that delta is dependent upon: the number of cases sampled per
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treatment or condition, the variation between population means

and an estimate of the error variance in the population. For

repeated measures designs, especially where ¥ shows heterogeneity,

an estimate of the error variance is difficult to make. Since
the error variance is a direct function of the average covar-
iance, the noncentrality parameter will differ from the inde-
pendent measures model where the expected value for the covar-
iance is zero.

The noncentrality parameter mentioned by Scheffe (1959)
has no term to account for non-zero covariance. Consequently,
the problem arises: are the three (aforementioned) parameters
of Scheffe sufficient to account for the power of the repeated
measures model? However, the problem becomes critical only
when the power of the independent and dependent measures models
are to be compared along a continuum of noncentrality. For the
case where the average correlation in the population is the
same and homogeneity of variance exists between treatment con-
ditions, comparisons of different power levels of sample F's-
drawn under varying sample sizes, degree of heterogeneity in I,
or number of treatment conditions is possible using Scheffé’
measure of noncentrality, where the error variance term is
equal to (1—52), where r is the average correlation between the

k treatments.




CHAPTER IT
METHOD AND PROCEDURE

The procedure used in the present research involved cal-
culating a large number of statistics, each based upon samples
which were drawn at random from a universe having specified
characteristics. On the basis of the statistical tests made
on these samples, the probabilities of the Type I and II errors
were determined.

1. Simulation of Data

Let Zs equal a k x 1 vector drawn from a k variate
multivariate universe, k denoting the number of treatment
classifications for which a given subject produces a measureable
response, where

E ( 2 Zé ) = I
This vector, Zs, contains k independent scores for any one
individual in a universe of n people and n such vectors may be
represented as a sample of n X k scores.

Let Rk equal a universe of intercorrelations among errors,
where

R=FF'

To generate correlated sample scores from the universe of

11
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errors, we let

F 2 = 4 , where
s r

E Zz Z! = E ! = s L]
(rr) (Fzsst) F(EZSZS)F

= F F' =R.

Thus, to impose intercorrelation matrix, R on the errors, the
vector ZS is sampled from a universe of scores and premulti-
plied by factor matrix, F.

Let u, (i=1,2, ..., k) be a vector of means, where Zui
= 0. In order to simulate raw scores with universe means given
by u., the iEl'-l treatment mean is added to the ith element of
the vector of error scores. The result, Sr is a k x 1 vector
of k raw scores for a given individual; n such vectors are
drawn from the universe with the resultant raw scores having
appropriate u and sigma in expectation.

2. The Simplex

It was previously mentioned that R will not be homo-
geneous when there is a practice or carry over effect across
treatments. In experimentation where repeated measures models
are appropriate, this is the usual case. The simplex is one
of the more common forms of sampling covariance matrices en-
countered in psychological research, especially where "learn-
ing" is involved. Anderson (1958) and Jones (1960) describe

the patterning of correlations in the simplex as a decrease
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in magnitude of the correlations in successive diagonals

away from the main diagonal.

The principle of the simplex is like that of a folding

telescope, in that the different stages or components of the

1 2° 3’
which is included in Rj' Algebraically,

Rj = fl + f2 + ... + fj (after Jones, 1960).

The perfect simplex is so structured as to have R1 and

F1 subject to the same conditions--except, the structured

variables don't all have equivalent variances (Jones, 1960).

Table 2.1
VARIABLE 2 3 4
1 .60 .40 .30
2 .80 .50
3 .90

Matrix of Intercorrelations Having Perfect Simplicial Form.

)

In addition, the matrix could be Grammian in form. In the

1

simplex follow the principle of inclusion (Jones, 1960). That

is to say, R, is included in R_, which is included in R cees

manipulation of psychological variables or the measurement of
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psychologiéal traits, one would not expect to find the inter-
correlation matrix to have negative roots.
3. Evaluation of the Magnitude of the Type I Error
To recapitulate, various procedures have been recommended
to test the F statistic resulting from a repeated measures de-
sign where the assumption of homogeneity of covariance has
been violated. These procedures have been suggested because
F, sampled under conditions of heterogeneity in I will become
inflated, and the use of the F distribution @ k-1 and (n-1)
(k-1) d.f. to test HO results in a positive bias in F when Ho
is true. Assuming that the experiment from which the sample
covariance matrix was constructed can't be altered, three alter-
natives for testing Ho against some alternative, Ho' are open
to the experimenter:
a. perform the usual test @ k-1 and (n-1) (k-1) d.f.;
b. wuse an approximation of the central F distribution
by adjusting the d.f.;
c. Or use an exact, multivariate statistic such as
T2.
By sampling from a universe where the parametersbvl,v2
(d.£f.'s) as well as the degree of bias in ¥ (as indexed by
Box's epsilon) are known, just how much of a departure from

the assumptions of the "usual” F test results in a Type I error-

as different from the alpha level chosen to test F, could be
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determined empirically. Testing these same data using sample

estimates of epsilon to adjust v, and v, would enable us to

1 2

measure the degree to which this correction procedure removes
the bias in F. As a control, T2 could also be calculated on
these same data. This would provide a control in the sense
that T2 would be the appropriate exact statistic to use when
£ is not homogeneous.

Lana & Lubin (1963) suggest that the sample estimate of
epsilon may not be the best estimate of the parameter, epsilon.
In the present study, since the value of the parameter epsilon
is known, adjusting the vy and v, parameters using the popula-
tion value of epsilon, and comparing the resulting probability
of the Type I error with those determined using the "biased" F
test, F- adjusted by the statistic epsilon and Tz, the relative
merit of the use of the actual parameter, epsilon, could be

determined.

4. Power of the Tests Under Conditions
of Heterogeneity in I

Testing Ho against some alternate hypothesis, Hl' when
we can specify that Ho is false, we are confronted with the
probability of committing a Type II error. Using the various
approximations of the F distribution, and the T2 statistic,
knowing the values of the 2K \PY ¢, and 3 , parameters, the
power of these tests may be determined by the relative number

of times Ho may be rejected. Unlike the Type I error, there
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is no readily available index, such as alpha, which we may use
to compare the empirical values of the Type II error. Power
curves for the F-test are presented in Dixon & Massey (1957).
Since the present model departs from the fixed constants model
as given by Dixon & Massey, a comparison of the empirical value
of the power of these tests and any expected value, is not
possible. However, the relative power of the various test
statistics may be compared.
5. Sampling Characteristics of Epsilon

Since the sampling distribution of epsilon is unknown,
any attempts to associate a probability of getting a sample
value differing from its expected value, by some magnitude,
would be beyond the scope of this study. Selected descriptive
measures of how well a limited sample of epsilon statistics from
a specified population, compares with the parameter, epsilon,
are used.

6. Selection of Parameters

A. Average universe correlation.

The R matrices were selected such that the average cor-
relation, between treatments, in the universe was constant,
throughout, but the resultant variance-covariance matrices dif-
fered in degree of heterogeneity. The basic axis of difference
was in terms of the magnitude of the parameter, epsilon, i.e.,

the "severity" of Box's correction: the smaller the value of

epsilon, the more d.f. lost.
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The average correlation2 was determined such that the

reliability of the data was both constant for the entire study

and uniformly high from matrix to matrix; e.g., r = .64, where
. c2
e 2 2 - 2
r=1- and On = 0L =P Oy thus...
2
“t
02-502) =%
r=1- ¢ P % P-
c2
t

(oi = total variance)

B. R matrices and the parameter epsilon.

The index used to define the degree of heterogeneity in
¥, from which sample covariance matrices were drawn, is the
parametric value of Box's epsilon. By specifing a series of
such matrices, where the value of ¢ is manipulated along the
1l to (k-l)-1 continuum, effects of the change in heterogeneity
in £ may be observed in a distribution of sample Fs from ¥. As
heterogeneity increases what is the effect on the F statistic?
The values of epsilon were ordinally chosen such that a high,
medium and low bias matrix ¥, could be defined. Since the
range of sample values of epsilon is dependent upon the vy
parameter, a different series of epsilons was used for each
21 parameter used in the study. Tables 2.2 through2.3 contain
a complete layout of the values of epsilon chosen for each vy

value used.

'
[ '
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C. k, the number of treatment classifications.

One advantage of the analysis of variance is that k means
are simultaneously compared. Any additional comparisons, using
the t test, results in a change in the alpha level, as given
by the following equation...

1 - (1- alpha)h, where h specifies the number
of comparisons being made among means.

Consequently, if one wants to take advantage of the
stability of alpha using a proper exact test and the ceﬁtral
F distribution, at least three means of treatment should be
compared. For the present study, at least three treatments,
are necessary if a simplex patterning of correlations in R is
desired. Two values for k were used for this study. A

k

3 was chosen in order that a minimum value in the accept-

able range of v, could be had and k = 5 was arbitrarily chosen.

1
D. n, the number of subjects or sampling units per element of
.

The values of n in this study, as in most models for the
use of testing statistical hypotheses, have an effect on the
sampling error the sample covariance matrix will contain. Gen-
erally speaking, as n increases, the sampling error decreases.
In terms of the power of the F test, the sampling error in the

covariance matrix must be estimated in order that the noncen-

trality parameter may be defined. As the sampling error de-
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creases, all other factors being constant, power of the test
increases.

It was mentioned that both an approximate and exact test
was used to test Ho for significance. The exact test uses the
F distribution to determine the p level for a sample value of
T2, however, the d.f. parameters are not determined in the
same way for a univariate F as for T2. The d.f. for the co-
variance matrix from which the value of T2 is determined must
be at least n-k-2. Therefore, any value of T2 calculated
from a ¥ not having the required minimal d.f. will not be
meaningful, but in some cases, e.g.; where n-k-1 is non-negative,
and F statistic will be meaningful.

These facts have important implications when selecting
values for n. If T2 is to be used and the data are appropriate
for the model, sufficient d.f. must be present for the T2 test.
However, as in the present study, where it is of interest to
know the empirical values of the Type I and Type II errors of
the F test when T2 can't be used, this comparison cannot be
made.

The values of n were chosen such that: 1) a minimum 4.f.
was present for an F but not a T2 test; 2) a minimum 4.f. was
present for the T2 test; 3) and two other values, n= 10 and
n= 15 were also chosen. The first two values for n, just above

and just below the required number for the T2 test, were dif-



'

0 '
-

|

Table 2.2

Population Covariance Matrices

(k= 3; n= 4, 6, 10, 15)

Heterogeneity

Index

1.00 .66 .64 .99
1.00 .66
1.00

1.00 .59 .44 .74
1.00 .83
1.00

1.00 .48 .17 .54
1.00 .92
1.00

20
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Table 2.3
Population Covariance Matrices

(k= 5; n= 6, 7, 10, 15)

« »
'
'

Heterogeneity
Index
1.00 .63 .63 .63 .62 .99
1.00 .66 .65 .64
1.00 .66 .67
1.00 .68
1.00
1.00 .58 .52 .48 .42 .78
1.00 .73 .70 .58
1.00 .78 .75
1.00 .79
1.00
1.00 .36 .31 .17 .14] .50
1.00 .83 .75 .52
1.00 .88 .8
1.00 .89
1.0
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ferent for the various values of k, as should be evident by
the fact that v, is dependent upon k as well as n. Tables
2.2 through 2 3 contain a complete description of the values
of n chosen for the study.

E. Values of the treatment means.

When the probability of the Type I error was investigated,
the values of the constants o, were equal across treatments.
Since the Type I error is relevant only when population means
are equal, the constants were set equal to zero when the null
hypothesis was true.

Investigation of the Type II error and its complement,
power, involves another parameter, the noncentrality parameter.
The power of the F test is dependent upon three parameters,

d.f. for the numerator, d.f. for the denominator and the non-
centrality parameter designated, delta, (8).

The dimensions of the nzi matrix determines the two d.f.
parameters and the values of the fixed constants (o's), relative
to the population error variance and sample size, determines
the non-centrality parameter.

Schefféd (1959) indicates the non-centrality parameter is

equal to

[ n Z(u—u..)2
k o
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... for the fixed constants model with independent

observations, viz.; non-repeated measures.

Since assumptions of the model were violated no appropriate
non-centrality parameter is indicated. § 2 was set equal to
the variance of the constants «o; weighted by n, the sample

size for each of the treatment observations, e.g.:;

2
nt (o¢; - ..)

1]

k

The restriction, nl = n2 = nj, was used such that each
treatment received equal weighting.

Ten values of noncentrality, illustrated in Table 3 4
ranging from .0l to 20.00 were chosen such that a reasonably
continuous function for power was obtained. The usual compar-
isons of the power of two tests having the same d.f. is not
possible, although the F and T2 statistics were both the results
of samples from the same variance-covariance matrix. Power
comparisons were made between the various approximate F tests
and T2 in terms of k and n rather than 21 and v,.

F. Number of sample covariance matrices.

For the investigation of the Type I error 1000 sample

covariance matrices were drawn for each n, k, and epsilon com-

bination, resulting in 12,000 sample covariance matrices. For

the power comparisons 500 sample covariance matrices were
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drawn for each n, k, epsilon and noncentrality combination,

resulting in 60,000 covariance matrices.

Table 2. 4

Values for 5 - the Noncentrality Parameter

.01 .050 .150 .500 1.00 1.25 2.00 2.50 5,00 20.0




CHAPTER III
RESULTS AND DISCUSSION

Samples were generated and evaluated for the various
combinations of the n, k, heterogeneity and noncentrality
parameters. When noncentrality was zero, the Type I errors
for the various tests of HO were determined by the percentage
of times H was rejected. When noncentrality was greater than

(o)

zero, power of the test was calculated in a similar manner.
1. The Type I Error.

The results of the probabilities of the Type I error
are shown in Tables 3.1 through 3.5. Appendix I contains tables
of the probabilities for each of the conditions. The results
of Table 3.1 show a general pattern for each of the tests on
HO for both alpha = .01 and .05.

Results using the exact F test (\i'v 2) indicate an in-
crease in positive bias in the statistic as heterogeneity in
the population covariance matrix is increased. A positive
bias is also observed even when epsilon (the value of which is
used to index heterogeneity) approaches unity. This would
indicate that the exact F test is sensitive to slight departures

from the assumption of homogeneity of covariance.

25
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The general pattern of results for tests on Hb using
the Box statistic approximation to the central F distribution,
F@ble, Vo€, indicates that as heterogeneity was increased bias
in the statistic was slightly negative for minimal heterogeneity
and becomes slightly positively biased for departures from
homogeneity of covariance. It should be noted that the degree
of departure from homogeneity of covariance had a negligable
effect on bias. When the Anova model was appropriate, i.e.:
epsilon approaches unity, the approximate F test produced
relatively less bias than the exact F test. Using the Box
statistic, therefore, will serve to limit bias due to sampling
fluctuations in Vk when the population covariance matrix indi-
cates homogeneity.

The results of tests on HO using the population value
of epsilon to adjust, 1 and\,2 of F were similar to those
optained when HO was tested by adjustment of d.f. with the
sample estimate of epsilon. It is observed that this procedure
is ineffective when the covariance matrix is homogeneous
because this test 1s the same as the exact F. It would seem
that the sample estimate of epsilon is a good one judging by
the similar, (unbiased) F statistics obtained with both the
population and sample estimates of the statistic.

The test on H., as suggested by Geisser & Greenhouse,

o]

whereby thewv 1 and v 2 parameters assume the values of 1 and n-1,
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respectively, produced rather conservative Type I errors. That
is to say, the use of this procedure, in all cases, produced a
negatively biased F statistic. When the model was appropriate,
a severe loss of d.f. results in near zero probabilities. In-
creasing heterogeneity resulted in only a slight decrease in
the bias, but the resulting Type I error remained highly biased.
The results just reported are based on the probabilities aver-—
aged across the n and k parameters. The data as a whole, however,
reveals an interesting fact about the use of this "conservative"
procedure. Only when heterogeneity is maximal, in a statistical
sense, and the Grammian structure of R is demanded, as in the
case of epsilon approaching .50 for k = 3, does the Geisser &
Greenhouse procedure yield a relatively unbiased test. Failure
to obtain similar results when k was 5 is explained by the fact
that for larger order R matrices, maximal heterogeneity of 1/k-1
is not obtainable if R is to have Grammian properties and positive
intercorrelations. Therefore, the value of € = .50 when k = 5
does not fulfill the criterion of being the lower bound for the
domain of epsilon. Only when data are sampled from covariance
matrices with maximal heterogeneity is such a severe curtailment
of d.f. warranted.

Results obtained using the exact, multivariate T2 test
show Type I errors similar to those produced by the approximate

F test using the Box procedure to adjust d.f. In general, when
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there was a departure from the assumption of homogeneity of
covariance, T2 produced Type I errors converdging on alpha.

Table 3.2 and Table 3.3 show the results of the
probabilities of the Type 1 error for different k for various
degrees of heterogeneity in the covariance matrix. The results
of the exact F test Grl, vz) indicate that as k increased from
3 to 5, the positive bias in the statistic also increased. The
over-all effect becomes more pronouncéd as heterogeneity in-
creases; for the case where heterogeneity was moderate, the bias
was somewhat less for k = 3, than k = 5.

The test on Ho using the sample estimate of epsilon to
adjust d.f. shows an overall effect of a shift in bias, from
negative to slightly positive, as k increases. As heterogeneity
increased, a stability of the Type I error was noted when k = 3,
but when k = 5, bias was slightly negative for low heterogeneity
and became slightly positive when heterogeneity was maximal.
Tests using the parametric value of epsilon to approximate F
indicate that an increase in k results in an overall increase
in the Type I error. Increasing heterogeneity didn't result in
an appreciable change in the Type I error when k = 5; the results
for k = 3 are not as clear. Tests using the Geisser & Greenhouse
procedure show that an increase in k results in an increase in

the degree of negative bias. Increasing heterogeneity serves

to decrease the bias, but only slightly.
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As departures from homogeneity of covariance were
evidenced, the bias in the T2 test became negligible, regard-
less of the value of k.

Tables 3.4 and 3.5 show the effect, on the Type I error,
of an increase in n for varying degrees of heterogeneity in the
covariance matrix. When the covariance matrix was homogeneous,
we were sampling from a population which was congruent with the
assumptions of the model. As we increase n and consequently,
thev2 parameter, the sampling error for any given (exact)
statistic should decrease and the Type I error should approach
alpha when the statistic is free of bias. If the statistic in
question has relatively less sampling error as n increases, it
is said to be consistent.

For all tests employed on HO' with the exception of the
exact F test @\i' Ny s the overall effect of increasing n was
negli gable. For increasing n, the consistent properties of the
exact F statistic were observed. For large n, the probability
of the Type I error and alpha tend to converge, indicating the
unbiased characteristic of the statistic. Increasing heterogene-
ity in the covariance matrix, the effect of increasing n showed
a relatively consistant decrease in bias, though the bias was
still largely positive.

The effect of increasing n for tests on H_ using Box's

0]

sample estimate to adjust d.f. of F, was negligable. This
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statistic remained relatively stable even as heterogeneity was
increased. Only a slight positive bias was evidenced for maximal
heterogeneity. Similiar results were obtained when the para-
metric value of epsilon was used to approximate the F distribution.
The Geisser & Greenhouse procedure produced a negatively
biased statistic (close to zero in some cases); as heterogeneity
increased, the bias decreased somewhat. The results reported in
tables 3.4 and 3.5 indicates the T2 test to be robust to hetero-
geneity of covariance and produces a relatively unbiased test
for all n's across the heterogeneity continuum. Only when
heterogeneity was evidenced in the covariance matrix did the test
produce a negative bias which tends to increase with increases

in n.

Conclusions about the Type I error.

Increases in the heterogeneity of the population covariance
matrix produced an increasing degree of positive bias in the
exact F statistic @'Vl' voe As departures from homogeneity of
covariance was evidenced, approximate tests using the F distri-
bution, adjusted by the sample estimate and parametric values of
Box's epsilon, as well as the exact multivariate T2 statistic,
tended to produce relatively unbiased tests of HO. Only when

heterogeneity, approached the maximum value (as indexed by

¢ = 1/k-1) was the Geisser & Greenhouse procedure of testing Hy,
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using an approximation to the central F distribution, effective
in producing a relatively unbiased test. Increasing k for various
degrees of heterogeneity produced slight increases in the Type

I error for all tests on HO' The exact F showed a decrease in
bias with an increase in n, illustrating the consistency of the
statistic. For the other tests on H_employed in this study,

0

the effect of changes in n were negligable over the range

employed.
Table 3.1
Probabilities of the Type I Error:
Averaged across n and k
Alpha Heterogeneity TEST 2
Level F € e’ 1,n-1 T
.01 Min. .01813 .00750 .01813 .00063 .00505
Mod. .02963 .01225 ,01088 .00231 .00967
Max. .05088 ,01350 .01300 .00525 .01260
.05 Min. .07488 .04863 ,07488 .01575 .03583
Mod. .09286 .05638 .06025 ,02475 .04117
Max. .11838 .06238 .06413 .04125 .06083
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Table 3.2

Probabilities of the Type I Error: at o = .01

Averaged across n

32

k Heterogeneity TEST 5
Index F € e’ l1,n-1 T
3 .99 .01775 .01100 .,01775 .00125 .00433
.74 .03250 .01525 ,00675 .00450 00800
.54 .04325 .01200 .00900 .00825 .01366
5 .99 .01850 .00400 .01850 .00000 .00566
.78 .02675 .00925 ,01500 .00012 .01133
.50 .05850 .01500 ,01700 .00225 01066
Table 3.3
Probabilities of the Type I Error: at = .05
Averaged across n
kX Heterogeneity TEST >
Index F € e' l,n-1 T
3 .99 .07275 .05575 .07275 .02750 .03300
.74 .09475 .06450 .05425 04000 .03800
.54 .11050 .06325 .05900 .05800 .06833
5 .99 .07700 .04150 .07700 .00400 .03866
.78 .09100 .04825 06625 ,00950 .04433
.50 .12625 ,06150 .06925 ,02450 .05333




33

»

Table 3.4

Probabilities of the Type I Error: at o = .01
Averaged across k

n Heterogeneity TEST

F € e’ l,n-1 T2
4 (or) 6 Min. .0200 .0050 .0200 .0000
Mod. .029% .0105 .0110 .0030
Max. .0550 .0115 .0110 .0045
6 (or) 7 Min. .0225 .0080 .0225 .0015 .0060
Mod. .0290 .0080 .0105 .0015 .0090
Max. .0550 .0140 .0125 .0060 .0110
10 Min. .0205 .0105 .0205 . 0000 .0060
Mod. .0245 .0125 .0085 .0025 .0090
Max. .0490 .0125 .0135 .0050 .0145
15 Min. .0095 .0065 .0095 .0010 .0030
Mod. .0310 .0180 .0135 .0030 .0110
Max. .0440 .0160 .0150 .0050 .0110

t

'
1
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Table 3.5

Probabilities of the Type I Error: at o = .05
Averaged across k

n  Heterogeneity TEST
F € e’ l,n-1 T

4 (or) 6 Min. .0770 .0395 .0770 .0135
Mod. .1055 .0530 .0635 .0235
Max. .1430 .0645 .0650 .0440

6 (or) 7 Min, .0900 .0560 .0900 .0170 .0360
Mod. .0890 .0515 .0590 .0195 .0430
Max. 1125 .0605 . 0625 .0410 .0580

Mod. .0825 .0565 .0540 . 0255 .0415
Max. .1120 .0670 .0710 .0430 .0680

15 Min. .0610 .0480 .0610 .0145 .0320
Mod. . 0945 . 0645 .0645 .0305 .0390
Max. .1060 .0575 .0580 .0370 .0565

' 10 Min, .0715 .0510 .0715 .0180 .0395
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2. The Power of the Tests

The data in Appendix II shows the power of the different
F tests and that of T2 when these statistics were tested for
significance at the .05 and .0l levels for the various combinations
of n, k, and index of heterogeneity in the covariance matrix.
For each point on these graphs, 500 statistics were sampled.

In general, when the model was said to hold, i.e.; the
covariance matrix was homogeneous, the exact F and the Box
procedure for approximating the F distribution using the parameter
€ to adjust d.f., were the most powerful, with the other
Box procedure using the parameter, ¢, the Geisser & Greenhouse,
and T2 tests showing a decreasing degree of power, in that
order.

The criterion chosen to provide a basis of comparison of
the obtained power curves is twofold.

1. Which test is most powerful, and does this power hierarchy

among tests remain consistent as noncentrality increases?

2. How divergent are the power curves for a given com-

parison?

Comparing power curves for all n, k, and epsilon values,
when HO is tested at .01 and .05, we observe that as the g
level increases (from .05 to .0l1), the curves for the five tests

show a greater degree of divergence and tend to have the expected

level of power.
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As the degree of heterog neity in the population increased,
the exact F statistié remained consistently the most powerful
test and maintains the same level of power. The divergence
among the power curves for the other tests decreased and approached
that of the exact F as both heterogeneity in the covariance
matrix and n, increased to their maximum values for this study.
As thewv 1 parameter increases from 2 to 4, a greater divergence
of the power curves for the five different tests on H0 for the
data drawn from the same population was found. As expected, the
overall level of power for all five tests is higher as V1 and v2

increases.

With respect to comparisons among the five tests on H where

0’
the statistics were sampled from the same population, in all
buf one case, the exact F was most powerful. Tests using the
population value of epsilon and sample value of the statistic,
were second and third in the power hierarchy. Although the
differences in power of the aforementioned Box tests and the
exact F was slight, they were considerably more powerful than
the Geisser & Greenhouse and T2 procedures. The T2 and Geisser
& Greenhouse tests showed a consistant reversal of power across
the noncentrality continuum. As a rule, T2 was more powerful
for low noncentrality but as noncentrality increased, the
Geisser & Greenhouse procedure became more powerful. Apparently

2 . ey . .
7" is more sensitive to differences between means when these

differences are slight. As these differences became relatively
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larger, the Geisser & Greenhouse procedure produced the more

sensitive test.

When v, = 2 for n = 10, and the degree of heterogeneity was

2
moderate, T produced the most powerful test. For various

. 2
levels of non-centrality, T was the least powerful test, relatively

g, for all other parameters studied.

General Conclusions Concerning Power Of The Tests

Although power comparisons were made between statistics

which showed a degree of bias of type I error when H 2 was true,

0]

the exact F test for the current model f nds to remain robust

with respect to power. When the assumption of homogeneity

of covariance was violated, as indicated by a value of the

parameter, epsilon <1, the power of the approximate tests using

the F distribution increased and approached that cf the exact

F test. This indicates that the various correction procedures

are effective in maintaining relatively high levels of power

for approximations of the F distribution, even though a curtail-

ment of the d.f. results from these procedures, when the

assumption of homogeneity of covariance has been violated.
Whether or not the power of these tests is inflated was

not determinable from this study. However, if the power of the

exact F test was inflated, any increase of heterogeneity in the

covariance matrix did not tend to further inflate the power of
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the statistic. Again we see that the F statistic is fairly
robust, powerwise, to violations of the assumption of homogeneity

of covariance.

.

3. Sampling Characteristics of Box's ¢

Table 3.7 contains the means and standard deviations
of the epsilon statistics which were used to adjust the d.f.
of the F statistic for data collected to evaluate the Type I
error.

The distributions of ¢ show marked skewness when the
number of treatment classifications of the covariance matrix
is three. When k is increased to five, the distribution be-
comes more symetrical,

As the d.f. of £ increased (an increase of n, relative
to k), the variability in epsilon decreased, as indicated by
a reduction in the standard deviation of €. An increase in

the d.f. in ¥ resulted in a greater disparityof the sample

mean of the distribution and the value of the parameter,

epsilon, when k was increased from three to five. Therefore,

as the number of elements which compose I increased, the

greater was the departure of the sample mean of ¢ from the

parametric value of the statistic. It was also observed that

as the index of heterogeneity of the covariance matrix, given
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by the parameter, epsilon, showed greatest heterogeneity,
when k= 3, the relation of the sample mean and the parameter,
¢, remained invariant with an increase in d.f. in Y. Under
this condition, a convergence of the sample mean and the para-
metric value of ¢ was evidenced. The frequency distributions
of these epsilon statistics tended to be skewed positively,
i.e.; away from the end of the continuum indicating extreme
heterogeneity, and were leptokurtic. Why this happened when
heterogeneity was maximal, but not when minimal, is not clear.

The point biserial correlation coefficients shown in
tables 3.6 and 3.7 were used as descriptive measures to deter-
mine how well the sample estimates of epsilon could predict
the value of the parameter. If, for example, we draw samples
of ¢ from two distinct covariance matrices, differing only in
the value of the parameter, epsilon, a point biserial correlat-
ion coefficient between the samples drawn from these different
populations can provide an index of the degree to which we
can specify the population values (parameters) of epsilon from
knowledge of the means and standard deviations of the sampling
distribution of the statistic.

When samples were drawn from the extremes of the range
of the domain of epsilon, prediction was superior to when
samples were drawn from the midrange. As the d.f. of X increas-

ed, so did the predictability of the parameter, epsilon. When
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the order of ¥ was maximal, for the conditions studied, pre-
diction of ¢ from the middle portion of the range of the

statistic was slightly superior to the case when k = 3,




Descriptive Measures of Samples of Box's Epsilon

(k = 5)

n Heterogeneity Mean o Tt
Index b
7 .99 .609 . 099 .466
.50 .426 .081 .605
.78 .553 . 099 .139

(overall) .529 121
10 .99 .690 .086 .567
.50 .454 .075 .707
.78 .611 .098 .140

(overall) .585 131
15 .99 .770 .076 .651
.50 .464 .070 .789
.78 .661 .095 .138

(overall) .632 .150
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Descriptive Measures of Samples of Box's
(k = 3)

10

15

Table 3.7

Heterogeneity
Index

.99

.54

.74
(overall)

.99

.54

.74
(overall)

.99

.54

.74
(overall)

Mean

.774
.547
.694
.672

.851
.543
.720
.705

.890
.543
.735

.126
.051
.126
.142

.103
.033
112
.155

.082
.026
.098

Epsilon

rpt

.508
.619
111

.668
.738
.070

.736
.791
.054
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4. SUMMARY

Samples were generated from populations with known mean
o and ¥ (covariance matrix) for the repeated measures design
for specified values of the vy and v, parameters, The values
of n for a k of three were 4, 6, 10 and 15, and for k = 5 were
6, 7, 10, and 15. Heterogeneity in ¥ was defined by the severity
of the loss of d.f., as indexed by the parametric value of
Box's epsilon, €. Minimum, moderate and near maximal conditions
of heterogeneity were established. When the value of the
noncentrality parameter was zero, the Type I error was studied;
when noncentrality was greater than zero, the power of the
tests was investigated.

The results of this study indicate that as d.f. and
heterogeneity of covariance increased in the population, the
approximations to the central F distribution, as suggested by
Box, and the T2 test, become increasingly more effective in
accounting for bias in the F statistic resulting from violations
of the model. When heterogeneity in ¥ was maximal for the
present study, only then was the Geisser and Greenhouse pro-
cedure effective in achieving a relatively unbiased test of
Ho.

When the power of the various tests was investigated

over the various values of noncentrality, it was found that the

overall level of power for the exact F remained relatively
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invariant when homogeneity of covariance was violated.
When the approximate procedures using the F distribution
were used when violations of the model for the exact F was

present in ¥, and hence "logically" appropriate, the power of

these tests approached that of the exact F.

Descriptive measures of the distribution of e revealed
the sample estimates of the parameter to be best when samp-
ling from the extreme ranges of the domain of the statistic.
As the d.f. in T increased, differential prediction of the

parameter, given the sample mean, improved.
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APPENDIX I

PROBABILITIES OF THE TYPE I ERROR

Probabilities of the Type I error are reported for each
of the n, k, epsilon or heterogeneity conditions for stat-

istics tested at the .01 and .05 levels.

45
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10
15

10
15

10
15

Probability of the

(k= 5; alpha= .01)
Heterogeneity
Index TEST
F € s'
.99 .021 .004 .021
.023 .002 .023
.023 .007 .023
.007 .003 .007
.78 .025 .006 .013
.032 .006 .016
.021 .011 .012
.029 .014 .019
.50 .051 .009 .014
.063 .015 .017
.066 .01e6 .018
.054 .020 .019

Type 1 Error.

1l,n-1
.000
.000
.000
.000

.000
.000
.000
.001

.001
. 004
.002
.002

T

.006
.008
.003

.009
.012
.012

.011
.010
.011

46
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(k= 5; alpha= .05)

n  Heterogeneity

Index ‘ TEST
F € e'
6 .99 .086 .036 .086
.091 .047 .091
10 .071 .044 .071
15 .060 .039 .060
6 .78 .094 .035 .064
.093 .047 .068
10 .072 .046 .057
15 .105 .065 .076
6 . .50 .133 .050 .062
7 .125 .058 .067
10 .124 .073 .081
15 .123 .065 .067

:

Probability of the Type I Error.

1l,n-1
.004
.005
.005
.002

.009
.007
.006
.016

.020
.024
.028
.026

T

.040
.049
.027

.044
.046
.043

. 049
.059
.052
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10
15

10
15

10
15

Probability of the Type I Error.
(k= 3; alpha= .01)

Heterogeneity
Index

.99

.74

.54

.019
.022
.018
.012

.034
.026
.028
.033

. 060
.047
.032
.034

. 006
.014
.014
.010

.015
.010
.014
.022

.014
.013
.009
.012

TEST
e
.019
.022
.018

.012

.009
.005
.005
.008

.008
.008
.009
.011

l1,n-1 T2
. 000

.003 . 006
. 000 .004
.002 .003
.006

.003 .009
. 005 .005
. 005 .010
.008

.008 .011
.008 .019
. 009 .011



(k= 3; alpha=

h  Heterogeneity

Index
F €
.99 .068 .043
.089 .065
10 .072 .058
15 .062 .057
4 .74 117 .071
.085 .056
10 .093 .067
15 .084 .064
4 .54 .153 .079
.100 .063
10 .100 .061
15 .089 .050

.05)

TEST
€
.068

.089
.072
.062

.063
.050
.051
.053

.068
.058
.061
. 049

- Probability of the Type I Error.

l,n-1
.023
.029
.031
.027

.068
.058
.058
.048

.023
.030
.037

.037
.035

.067
.077
.061
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APPENDIX II

SELECTED POWER CURVES

Twelve power curves are presented in this section
which are concidered to be representative of the power funct-

ions obtained in this study.

50
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FOOTNOTES

1 . .

Some authors have refered to this as a "mixed" model
because the n dimension, the subjects, is the result of a ran-
dom sample, but the k dimension, the treatments, is composed

of a discrete or finite variable.

2 . . s
Correlation coefficients were transformed by a

. -1 . .
hyperbolic arctan conversion for the averaging procedure.

3The tests of the null hypothesis, as presented in the

tables indicated are coded in the following manner: F vy

12
as F; F as ¢ (sample estimate of Box's statistic):
V,€ V€
1 2
Fv ety g 23S ¢' (parametric value of espilon); Fl, no1 28
1 2
. , 2 2
1, n-1 (Geisser & Greenhouse's procedure); and T v as T .

1v2
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